-
供应链分析 保持物流顺畅的五个技巧
所属栏目:[大数据] 日期:2022-03-31 热度:200
事实表明,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM)。 专业服务和咨询机构毕马威公司在最近发布的一份研究报告中指出,目前有几项重大中断正在影响供应链。其中包括由于新冠疫情而导致的全球物流持续中断,这些中断将继续影响[详细]
-
2022年的5个主要的数据迁移趋势
所属栏目:[大数据] 日期:2022-03-31 热度:95
数据似乎总是需要迁移,无论是从内部部署设施迁移到云平台,还是从操作系统到长期存档,数据始终在移动。 以下是2022年数据迁移市场的五个主要趋势: 1.非结构化数据迁移 2022年,首席信息官将会继续关注基础设施的现代化,以支持由于下一代应用程序、云计[详细]
-
创建数据驱动的价值生态系统的3个步骤
所属栏目:[大数据] 日期:2022-03-31 热度:104
事实证明,管理大量数据和颠覆性技术的关键在于建立一个能力中心。 尽管许多企业在其数据分析项目中使用人工智能和机器语言工具作为核心推动因素,并且全球人工智能支出持续增加,但事实上,大多数数据科学项目注定要失败。 导致这些失败的原因有很多,从[详细]
-
需要避免的7个数据治理错误
所属栏目:[大数据] 日期:2022-03-31 热度:188
如今的每个数据交易都是一种商业交易,这是构建一个强大、安全、适应性强且尽可能无错误的数据治理框架至关重要的原因。 大多数首席信息官都知道,处理不当的数据可能会导致财务、声誉、法律和其他问题。这就是企业需要拥有强大的数据治理策略的原因,也就[详细]
-
汽车公司和移动通信公司如何使用大数据提高驾驶安全性
所属栏目:[大数据] 日期:2022-03-31 热度:109
大数据技术如今在保障驾驶安全方面取得了重要进展,而有些人没有意识到大数据提供的惊人好处。大数据的最大好处之一是它可以帮助提高汽车驾驶的安全性。 在阻止发生交通事故方面,数据分析技术变得越来越有用。许多企业正在共享数据,为提高交通安全提供帮[详细]
-
企业IT可以真正将大数据应用到哪些地方?
所属栏目:[大数据] 日期:2022-03-31 热度:174
在各行业领域中,很少有比大数据更容易提及同时又不太容易理解的术语。这可能会让人们很容易将大数据视为一个不经意提到的流行语,而不仅仅是对于企业的流程和业务密切相关的真实价值的一个概念,但这是一个错误。理解并正确利用大数据对于任何企业的成功[详细]
-
业务分析师获取更多收入可以采取的7个措施
所属栏目:[大数据] 日期:2022-03-31 热度:79
无论是原地踏步还是展翅高飞,业务分析师都有很多方法提升其业务水平和收入。 业务分析师的工作通常是企业中最重要的工作之一:利用数据分析来弥合IT与业务之间的差距。在这一过程中,他们与业务领导者和用户互动,以更好地了解流程、产品、服务、软件和硬[详细]
-
选择嵌入式分析供应商时需要考虑的8件事
所属栏目:[大数据] 日期:2022-03-31 热度:101
选择嵌入式分析供应商并非易事,市场上可用的解决方案太多了,因此需要了解如何做出最佳决策,并确保投资更有效的解决方案。 事实是并没有直接的答案。正确答案其实是几个正确答案的组合,当然还有企业的特定业务需求。因此,企业在选择嵌入式分析供应商时[详细]
-
最大化数据分析价值的5种方法
所属栏目:[大数据] 日期:2022-03-31 热度:188
数字时代使大多数企业追求数据驱动战略的成果,但确保获得回报比大多数人想象的要微妙得多。 许多企业都在收集大量数据并对其进行分析,而通过分析这些数据获得最佳商业价值完全是另一回事。 在分析工具上投入巨资的企业可能没有找到方法来确保其努力带来[详细]
-
运用大数据进行营销的9种最佳方法
所属栏目:[大数据] 日期:2022-03-31 热度:101
大数据驱动营销业务的发展如今比以往任何时候都更加重要,所以需要战略性地使用这些实践。 对于很多企业来说,大数据已经成为一项非常具有价值的技术资产,并利用大数据改善业务。数据分析和人工智能技术的一些最佳实践已经出现在营销领域。 数据驱动营销[详细]
-
聊聊HBase海量数据高效入仓处理方案
所属栏目:[大数据] 日期:2022-03-15 热度:191
方案背景 现阶段部分业务数据存储在HBase中,这部分数据体量较大,达到数十亿。大数据需要增量同步这部分业务数据到数据仓库中,进行离线分析,目前主要的同步方式是通过HBase的hive映射表来实现的。该种方式具有以下痛点: 需要对HBase表进行全表扫描,对[详细]
-
不会体系化建模,那数据治理不就是乱来吗?
所属栏目:[大数据] 日期:2022-03-15 热度:191
本文基于美团配送数据治理的历程,重点和大家分享一下配送数据底座的建设与实践。如何通过体系化建模建立起数据定义到数据生产的桥梁,达成数据定义、模型设计、数据生产三个环节的统一,消除因数据标准缺失和执行不到位引发的数据信任问题,在高质量地实[详细]
-
2022年实时数据管理趋向
所属栏目:[大数据] 日期:2022-03-15 热度:191
数据现在必须实时流式传输,从而实现更快的可扩展性和出色的敏捷性。 随着数字化转型计划的顺利进行,公司正在投资于获取大量数据的战略,使他们能够在关键时刻做出正确的决策。处理这种数据存储的庞大数量和复杂性极具挑战性。 组织将需要实时从流数据中[详细]
-
大数据与Hadoop的几大优点
所属栏目:[大数据] 日期:2022-03-15 热度:157
Hadoop与竞争对手相比有哪些优势? 到目前为止,人们可能已经听说过ApacheHadoop。这个名字来源于一只可爱的玩具大象,但Hadoop只不过是一个毛绒玩具。Hadoop是一个开源软件项目,它提供了一种存储和处理大数据的新方法。 以下来看看。 1. Hadoop是可扩展[详细]
-
数据研发该怎样做好业务方管理
所属栏目:[大数据] 日期:2022-03-15 热度:60
伴随着业务的发展,业务方通常会提各种各样的数据需求。面对繁杂的需求,数据研发可能会遇到下面这些问题: 面对这些问题,我们需要学会做好业务方的管理,这样才不至于让自己陷入被动的深渊而不能自拔。 窘境 面对源源不断的需求,数据研发会越发地感觉到[详细]
-
你真的明白ELT和ETL吗?
所属栏目:[大数据] 日期:2022-03-15 热度:196
ETL 和 ELT 有很多共同点,从本质上讲,每种集成方法都可以将数据从源端抽取到数据仓库中,两者的区别在于数据在哪里进行转换。 接下来,我们一起详细地分析一下 ETL 和 ELT各自的优缺点,看看在你们现在的业务中用哪种方式处理数据比较合适。 1.ETL ETL -[详细]
-
社交媒体分析在未来业务中将发挥着至关重要的用处
所属栏目:[大数据] 日期:2022-03-15 热度:78
聪明的企业需要知道如何利用数据分析来充分利用他们的社交媒体战略。如果他们采用数据驱动的社交网络方法,他们将获得更多收益。 数据分析和社交媒体可以很好地齐头并进。事实上,有一个完整的领域被称为社交媒体分析,IBM上的这篇文章对此进行了描述。这[详细]
-
Kyligence 智能管理,使数据价值最大化
所属栏目:[大数据] 日期:2022-03-15 热度:76
对于当今的企业来说,如何精细化运营来降本增效是其面临的最为重要的问题,而深度挖掘数据、充分利用数据的价值是企业精细化运营必不可少的一环。相关数据显示,72%的企业首选大数据应用需求是基于客户行为分析的大数据营销,其次产品创新、风险预测、供应[详细]
-
在云中实施大数据的详情剖析
所属栏目:[大数据] 日期:2022-03-15 热度:167
在云中实施大数据的详情剖析: 1、关于云计算 云是IT行业的热门话题。它的受欢迎程度越来越高,越来越多的公司正在使用它。简单来说,云是可以存储和访问数据、程序和其他信息的异地位置。信息存储在使用网络连接的服务器上。这个异地位置就是云。 云很重[详细]
-
SparkSQL 在企业级数仓建设的优点
所属栏目:[大数据] 日期:2022-03-15 热度:67
Apache Hive 经过多年的发展,目前基本已经成为业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDBC 客户端、支持标准 JDBC 接口访问的 HiveServer2 服务器、管理元数据服务的 Hive Metast[详细]
-
2022年数据管理市场的发展趋向
所属栏目:[大数据] 日期:2022-03-15 热度:148
数据管理是一个应用广泛的市场,专注于优化数据的质量、组织和安全性,以帮助企业在各部门之间处理数据。 人们需要了解有关数据管理市场的所有信息: (1)数据管理市场 根据调研机构Expert Market Research公司发布的研究数据,2021年全球数据管理市场规模[详细]
-
企业需要不断推进数据策略
所属栏目:[大数据] 日期:2022-03-15 热度:91
Cloudera也与技术市场研究公司Vanson Bourne联合编写了《Cloudera企业数据成熟度报告:认识企业数据战略对业务的影响》报告,报告采访了2100位IT决策者,以及1050位业务决策者,亚太地区有700多位参与调查,其中150多位来自中国。 企业通过制定路线图来帮[详细]
-
建议收藏!大数据分析如何协助企业成长
所属栏目:[大数据] 日期:2022-03-15 热度:107
您是否知道,95%的企业表示管理非结构化数据对他们的业务来说是个问题? 不幸的是,我们今天生成的所有数据都是非结构化的。因此,分析数据既困难又昂贵,这解释了为什么它是大多数公司的主要问题。 数据分析可以告诉您业务的健康状况,以便您对业务中发生[详细]
-
数据是新石油,提炼新石油要遵循几个准则
所属栏目:[大数据] 日期:2022-03-15 热度:179
数据是新的石油,因为数据可以被用来获得洞察。根据公司的业务,洞察可以提高客户留存率、提升销售、产生新的收入模式、广告等等。如果数据是新的石油,洞察就是新的财富。 由于计算、物联网、机器生成的数据等方面的进步,数据量现在正在爆炸式增长。因此[详细]
-
将大数据转化为营销收入的几个窍门
所属栏目:[大数据] 日期:2022-03-15 热度:57
通过分析客户的数据,可以通过提供改进的商品或服务轻松识别和满足消费者的需求。这还消除了营销策略师的猜测,因为他们可以快速确定客户的购买行为,并将其作为营销活动的基[详细]