-
Twins重新思量高效的视觉注意力模型设计
所属栏目:[大数据] 日期:2022-06-09 热度:115
Twins [1] 是美团和阿德莱德大学合作提出的视觉注意力模型,相关论文已被 NeurIPS 2021 会议接收,代码也已在GitHub上进行开源。NeurIPS(Conference on Neural Information Processing Systems)是机器学习和计算神经科学相关的学术会议,也是人工智能方[详细]
-
不要想当然认为人工智能不会替代你的工作!
所属栏目:[大数据] 日期:2022-06-09 热度:179
我们已经看到,一些平淡无奇或单调乏味的任务已经被机器人或自动化所取代,那么怎样才能阻止它们让我们所有人都失业呢? 希望总是存在的:有很多工作还需完全依赖于人的素质,比如创造力或同情心。这些是计算机程序无法复制的东西难道可以复制?接下来,让我[详细]
-
通过AI系统分级协助企业控制成本
所属栏目:[大数据] 日期:2022-06-09 热度:178
就像国际汽车工程师学会(SAE)对自动驾驶汽车分级一样,为了预测人工智能系统的成本,给它们分个级别想必也是不错的选择。采用分级系统可以帮助组织计划和准备AI系统,且随着时间的推移,AI系统的复杂性也会不断增加。 设计和构建人工智能系统不是件容易事[详细]
-
智能虚拟助理如何助力你在2022年成倍提高工作效率
所属栏目:[大数据] 日期:2022-06-09 热度:197
智能虚拟助理 (IVA, Intelligent Virtual Assistants) 也称为智能个人助理 (IPA, Intelligent Personal Assistants) ,是由人工智能驱动的代理,能从客户元数据、先前对话、知识库、地理位置、以及其他模块化数据库和插件等环境中提取信息,并生成个性化响[详细]
-
大数据如何改变制造业
所属栏目:[大数据] 日期:2022-06-08 热度:129
区块链如何改变制造业 由于该领域的独家技术突破,制造业正处于一场革命之中。 制造业的大数据正在实现明智的战略,并制定未来的路线图。 制造业是在过去几十年里经历了巨大变化的行业之一。除了简单地自动化相关流程之外,制造业还利用技术实现各种其他目[详细]
-
一文读懂元数据管理!
所属栏目:[大数据] 日期:2022-06-08 热度:151
一文读懂元数据管理! 一、什么是元数据? 元数据(metadata)是关于数据的组织、数据域及其关系的信息,简言之,元数据就是描述数据的数据。概念总是生涩,对于没有IT背景的人来说比较抽象,不容易理解,下面举几个例子。 示例1:歌词中的元数据 有一首很[详细]
-
为何大厂选择减人而不是降薪?
所属栏目:[大数据] 日期:2022-06-08 热度:80
为何大厂选择减人而不是降薪? 01 前2天写了大厂裁人和招人为何同时进行的原理,后台也收到了很多有趣的私信,其中有一个问题让我觉得特别有意思。 问的是大厂为控制成本他能理解,但同样是控制成本,裁掉30%的人,以及不裁人集体降薪30%,区别是啥? 为什[详细]
-
终于有人把数据的属性讲明白了
所属栏目:[大数据] 日期:2022-06-08 热度:197
终于有人把数据的属性讲明白了 1.结构化与非结构化数据 某些数据集具有很好的结构性,就像数据库中的数据表或电子表程序中一样。而其他的数据以更多样的形式记录着有关世界状况的信息。它们可能是像维基百科这样包含图像和超级链接的文本语料库,也可能是[详细]
-
价值变现的关键是组织优化和数据治理
所属栏目:[大数据] 日期:2022-06-08 热度:165
大数据、数据治理、数据湖以及目前被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,[详细]
-
反映数据质量的八个指标
所属栏目:[大数据] 日期:2022-06-08 热度:157
数据的质量直接影响着数据的价值,并且还影响着数据分析的结果以及我们依此做出的决策的质量。质量不高的数据不仅仅是数据本身的问题,还会影响企业的经营管理决策;数据错误还不如没有数据,因为没有数据时,我们会基于经验和常识做出不见得是错误的决策,[详细]
-
如何采用大数据技术帮助制定数字化策略?
所属栏目:[大数据] 日期:2022-06-08 热度:79
数字化采用被定义为通过优化遗留系统和利用新技术来重塑企业。近年来,大数据一直是数字化采用的中心。这就是全球各地方的公司去年在大数据技术上花费1620亿美元以上的原因。 整个过程远不止这些,但采用新技术并将其集成到业务工作流程中是关键。为了简化[详细]
-
数据中台虚火?数据管控体系应该这么搭
所属栏目:[大数据] 日期:2022-06-08 热度:90
大数据、数据治理、数据湖以及被热议的数据中台概念,无不让企业信息化部门疲于跟进,而不是根据企业的实际情况决定建设节奏。企业A的IT部门,就曾受到业务部门要求建设数据中台的压力,但迟迟难以下决心启动数据中台项目。 从A企业的视角来看,目前,行业[详细]
-
大数据和道路安全如何携手共进?
所属栏目:[大数据] 日期:2022-06-08 热度:80
大数据现在被广泛用于预测交通和避免事故 道路交通事故仍然是一个主要问题,因为全球每年有超过 125 万人丧生。根据世界卫生组织的一份报告,它仍然是 15 至 29 岁人群的主要死因。 世卫组织已承诺采取一项强有力的举措,到 2022 年减少道路交通事故造成的[详细]
-
数据科学中数据收集的终极指南
所属栏目:[大数据] 日期:2022-06-08 热度:65
在当今世界,数据对任何一家企业的成功都起着关键作用。企业的目标受众、竞争对手产生的数据、工作领域的信息以及企业自己收集的数据可能会帮助找到更多客户、分析业务决策、重新优化业务模型或进入到其他市[详细]
-
紧跟业务发展速度的数据治理是啥样的
所属栏目:[大数据] 日期:2022-05-20 热度:111
如今企业要获取数据,物联网(Internet of things,IoT)设备、可穿戴设备、软件即服务(Software as a Service,SaaS)应用程序和社交媒体都是来源。对这些数据的组合和深入分析可以为企业提供新的洞察力,并助力企业发现潜在商机。通过将这些能力在企业内扩[详细]
-
何为经营分析?为什么大厂这么重视它
所属栏目:[大数据] 日期:2022-05-20 热度:55
上周一连有两个大厂(短视频、游戏)的朋友来聊经营分析,着实让我好奇了一下。经营分析这个东西,以往都是传统国企做得多,咋连他们也开始纠结了。 聊完才发现:地主家也没余粮呀!toC互联网的流量见顶,成本增高,让原本花钱如泼水的大厂也得重视效益考核,[详细]
-
视频时代的大数据 问题 挑战与处理方案
所属栏目:[大数据] 日期:2022-05-20 热度:88
视频时代的大数据 问题 挑战与处理方案: 一、介绍 人们所观察的世界无时无刻不在改变,造就了视频相比于文本等类型的数据更具表现力,包含更加丰富的信息。如今,能够产生视频的数据源及应用场景愈发多样,视频数据的规模不断增长,视频大数据成为支撑诸[详细]
-
数据分析的12个神话被揭露
所属栏目:[大数据] 日期:2022-05-20 热度:103
从数据问题到人员需求再到技术组合,数据分析的误解比比皆是。下面我们来看看如何利用数据科学来实现真正的业务成果。 在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会[详细]
-
为何企业必须采用大数据战略?
所属栏目:[大数据] 日期:2022-05-20 热度:72
智能企业利用各种形式的海量数据来更好地了解消费者、管理库存、优化物流和运营程序,并做出合理的业务选择。成功的公司也认识到处理他们产生的大量大数据的重要性,以及发现可靠的方法来从中提取洞察力。制定大数据战略以正确有效地存储、组织、处理和利[详细]
-
数据分析,如何赐能业务?
所属栏目:[大数据] 日期:2022-05-20 热度:92
做工作规划的时候,有很多公司都提出要求,要数据赋能业务/赋能销售/赋能运营到底啥玩意是赋能,咋个赋能法???往往领导又丢回一句你要多想想啊让人着实无奈。今天我们系统解答一下。 前方剧透警报:因为大量用了电视剧《亮剑》的梗,所以忘记的同学们可以[详细]
-
数据分析七大实力 梳理数据需求
所属栏目:[大数据] 日期:2022-05-20 热度:178
大家好,我是爱学习的小xiong熊妹。 今天分享数据分析师必备的工作能力需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。 一、什么是数据需求? 顾名思义,数据需求,就是业务部门对数据分析产出的需[详细]
-
HDFS 为什么在大数据领域经久不衰?
所属栏目:[大数据] 日期:2022-05-20 热度:109
HDFS 为何在大数据领域经久不衰? 1.概述 1.1 简介 Hadoop实现的一个分布式文件系统(Hadoop Distributed File System),简称HDFS。 源自于Google的GFS论文,发表于2003年,HDFS是GFS的克隆版。 大数据中最宝贵、最难以代替的就是数据,一切都围绕数据。 HD[详细]
-
Java开发人员需要明白的地域分布数据库
所属栏目:[大数据] 日期:2022-05-20 热度:137
在过去的七年里,我一直在使用分布式系统、平台和数据库。早在2015年,许多架构师就开始使用分布式数据库扩展单个机器或服务器的边界。他们选择这样的数据库是因为它的水平可伸缩性,尽管它的性能依然只能与传统的单服务器数据库相媲美。 现在,随着云原生[详细]
-
Flink 在 B 站的多元化探索与践行
所属栏目:[大数据] 日期:2022-05-20 热度:81
本文整理自哔哩哔哩基础架构部资深研发工程师张杨在 Flink Forward Asia 2021 平台建设专场的演讲。主要内容包括: 1.1 基础功能完善 在平台的基础功能方面,我们做了很多新的功能和优化。其中两个重点的是支持 Kafka 的动态 sink 和任务提交引擎的优化。[详细]
-
详解数据管理发展的五个阶层
所属栏目:[大数据] 日期:2022-05-20 热度:177
近年来现代化企业都在改革现有的数据管理体系,优化原有的基于策略定义的数据管理模型,逐渐开始使用基于数据使用行为的数据管理方式。以确保数据不仅可用,而且保持活性,从而始终让数据资产充分发挥本身价值。 从历史的视角看,数据管理是一个不断进化发[详细]